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Abstract
We calculate the relaxation rate of the nuclear spin in an s-wave superconductor
with nonmagnetic impurities, including the strong-coupling effects. We show
that in a weakly disordered three-dimensional system the corrections due to
disorder are negligibly small.

1. Introduction

In this paper we revisit a long-standing problem about the effect of nonmagnetic impurities on
the nuclear spin relaxation rate [1] Rs(T ) in isotropic superconductors. The first calculation of
Rs in a clean superconductor using the Bardeen–Cooper–Schrieffer (BCS) model was done by
Hebel and Slichter [2]. They noticed that the expression for the relaxation rate is logarithmically
divergent at all temperatures below Tc, due to the singularity of the BCS quasiparticle density
of states (DoS) at the gap edge. This singularity survives even in the presence of scalar
disorder (since, according to Anderson’s theorem, the superconducting gap is not affected by
nonmagnetic impurities) and was removed in [2] by phenomenologically introducing some
energy level broadening. A few years later, Maki and Fulde [3] calculated the relaxation rate in
a superconductor with magnetic impurities, in which case the DoS singularity is smeared and
the expression for Rs is finite at all T . It was shown in [3] that the impurity vertex corrections
to the relaxation rate are negligible. In a parallel development, the Hebel–Slichter arguments
about the importance of the level broadening were put on a quantitative footing by Fibich [4]
(see also [5]) who calculated the relaxation rate in the clean case using the Eliashberg theory
of electron–phonon superconductivity [6] (the so-called strong-coupling model) and found that
inelastic scattering indeed removes the gap-edge singularity and produces a finite relaxation
rate.

The effect of scalar impurities in the strong-coupling regime remained an open problem for
another three decades until Choi and Mele [7] presented a calculation of the relaxation rate, in
which they questioned the accuracy of the Maki–Fulde result and claimed that the impurity
vertex corrections are important. As a result, Rs appreciably increases with nonmagnetic
disorder, especially in the dirty case � � ξ0, where � is the elastic mean free path and ξ0 is the
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superconducting coherence length. In this paper we try to resolve this controversy. The paper
is organized as follows. In section 2, we calculate the relaxation rate in the weak-coupling BCS
limit, using the exact eigenstates method to perform the disorder averaging. In section 3, the
exact eigenstates method is generalized to the strong-coupling case. In section 4, we calculate
the relaxation rate in the strong-coupling case by another method, using a standard disorder
averaging technique involving the summation of the ladder impurity diagrams.

2. Exact eigenstates method: weak coupling

Without loss of generality we consider the case of a nuclear spin I = 1/2 located at the
origin of the crystal lattice. Higher values of I only change the overall prefactor in the
expression for the relaxation rate [1], which drops out of the ratio of the relaxation rates in
the superconducting and normal states. We assume, following Hebel and Slichter [2], that
while the resonance is observed in a strong field in the normal state, the relaxation takes place
in a uniform superconducting state after switching off the field. The spin–lattice relaxation rate
due to the hyperfine contact interaction of the nucleus with the band electrons is given by

R ≡ 1

T1T
= − J 2

2π
lim
ω0→0

Im K R(ω0)

ω0
, (1)

where J is the hyperfine coupling constant, ω0 is the NMR frequency and K R is the retarded
correlator of the transverse components of the electron spin density at the nuclear site [1, 8],
which is calculated as follows. We introduce K (νm), with νm = 2πmT , as the Fourier
transform of

K (τ ) = −〈〈Tτ S+(0, τ )S−(0, 0)〉〉imp. (2)

Here 〈· · ·〉 denotes the quantum statistical average and 〈· · ·〉imp denotes the averaging over
impurity configurations [9, 10]. The spin density operators in the Matsubara representation
are given by S±(r, τ ) = eH τ S±(r)e−H τ , where H is the electron Hamiltonian, to be defined
below, and

S+(r) = ψ
†
↑(r)ψ↓(r), S−(r) = ψ

†
↓(r)ψ↑(r). (3)

We use the units in which h̄ = kB = 1, and the spin quantization axis is chosen along the
external magnetic field H . The retarded correlator in equation (1) is obtained by the analytical
continuation: K R(ω0) = K (νm)|iνm→ω0+i0.

The properties of our system in the superconducting state can be described using a standard
field-theoretical formalism in terms of the normal and anomalous Gor’kov functions [9], which
can be combined into a 2 × 2 matrix Green’s function

Ĝ(r, τ ; r′, τ ′) =
(

G(r, τ ; r′, τ ′) −F(r, τ ; r′, τ ′)
−F†(r, τ ; r′, τ ′) −G(r′, τ ′; r, τ )

)
. (4)

Introducing the two-component Nambu operators [11]

	(r, τ ) =
(
ψ↑(r, τ )
ψ

†
↓(r, τ )

)
, 	̄(r, τ ) = (ψ

†
↑(r, τ ) ψ↓(r, τ )), (5)

the matrix Green’s function can be written in a compact form:

Ĝ(r, τ ; r′, τ ′) = −〈Tτ	(r, τ )	̄(r′, τ ′)〉. (6)

The Matsubara spin correlator (2) can be expressed as the impurity average of the product of
two matrix Green’s functions:

K (νm) = 1
2 T

∑
n

Tr〈Ĝ(0, 0;ωn + νm)Ĝ(0, 0;ωn)〉imp, (7)

2
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where ωn = (2n + 1)πT . Note that this representation of the spin correlator in terms of the Ĝs
is not unique (see section 4 below).

We consider a single spin-degenerate electron band in a three-dimensional (3D) crystal and
neglect the spin–orbit coupling. The electron Hamiltonian is written as H = H0 + Hint, where

H0 =
∫

d3rψ†
α(r)h0ψα(r) (8)

describes noninteracting electrons, with α = ↑,↓ being the spin projection and

h0 = − ∇2
r

2m
+ U(r)− εF. (9)

Without loss of generality we assume an isotropic parabolic band. The impurity potential U(r)
is characterized by the correlator

〈U(r1)U(r2)〉imp = 1

2πNFτel
δ(r1 − r2), (10)

where NF is the density of states at the Fermi level and τel is the elastic mean free time.
In a weak-coupling BCS superconductor, the interaction Hamiltonian which describes s-

wave singlet pairing has the following form:

Hint = 1
2

∫
d3r Vαβ,γ δψ

†
α(r)ψ

†
β(r)ψγ (r)ψδ(r), (11)

where Vαβ,γ δ = −(λ/2)(iσ2)αβ(iσ2)
†
γ δ and λ > 0 is the coupling constant. Treating the pairing

interaction in the mean-field approximation, the equation of motion for the matrix Green’s
function (4) can be written in the form( −∂τ − h0 −�(r)

−�∗(r) −∂τ + h0

)
Ĝ(r, τ ; r′, τ ′) = τ̂0δ(r − r′)δ(τ − τ ′), (12)

where τ̂0 is the unity matrix in the Nambu space and�(r) = λF(r, τ ; r, τ ) is the gap function.
The spin correlator (7) will now be calculated using the exact eigenstates method (see

e.g. [12]), which allows one to relate properties of the system in the superconducting state to
those in the normal state. The key assumption is that the disorder-induced fluctuations of the
gap function can be ignored:

�(r) → � = 〈�(r)〉imp. (13)

According to Anderson’s theorem, the average gap is not renormalized by nonmagnetic
impurities, i.e. the value of � at any temperature is the same as in the clean case. We introduce
the exact eigenstates and eigenvalues of the single-particle Hamiltonian with impurities:

h0ϕa(r) = ξaϕa(r),

∫
d3r |ϕa(r)|2 = 1, (14)

where, according to the definition (9), the chemical potential is included in ξa . Then the
Gor’kov equations (12) can be solved, with the result

Ĝ(r, r′;ωn) =
∑

a

ĝa(ωn)ϕa(r)ϕ
∗
a(r

′), (15)

where

ĝa(ωn) = − iωn τ̂0 + ξa τ̂3 +�τ̂1

ω2
n + ξ 2

a +�2
. (16)

3
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Substituting this in equation (7) we obtain, after the Matsubara frequency summation and the
analytic continuation iνm → ω0 + i0,

lim
ω0→0

Im K R(ω0)

ω0
= −π

2

〈∑
a,b

|ϕa(0)|2|ϕb(0)|2δ(Ea − Eb)

×
(

− ∂ f

∂Ea

) (
1 + ξaξb +�2

Ea Eb

)〉
imp

, (17)

where f (x) = (ex/T + 1)−1 is the Fermi function, and Ea = √
ξ 2

a +�2.
Next, we introduce the local DoS in the normal state

N(r, ε) =
∑

a

|ϕa(r)|2δ(ε − ξa), (18)

perform the disorder averaging in equation (17) and insert the result in the expression (1) for
the relaxation rate

R = 1

2π
J 2 N2

F

∫ ∞

−∞
dω

(
− ∂ f

∂ω

) ∫ ∞

−∞
dε1 dε2 �(ε1, ε2;ω)R(ε1 − ε2). (19)

The superconducting gap enters here only through the function �, which in the weak-coupling
case has the form � = �wc, with

�wc(ε1, ε2;ω) = π

2

(
1 + ε1ε2 +�2

ε2
1 +�2

) √
ε2

1 +�2

|ε1|
× [δ(ε1 − ε2)+ δ(ε1 + ε2)]δ

(
ω −

√
ε2

1 +�2

)
, (20)

while all effects of impurities are contained in the local DoS correlator

R(�) = 1

N2
F

〈N(0, ε +�)N(0, ε)〉imp. (21)

In the normal state, we set � = 0 in equation (20) and obtain Rn = J 2 N2
FR(0)/2. To

calculate the local DoS correlator, we write N(0, ε) = −[GR(0, 0; ε) − GA(0, 0; ε)]/2π i,
where

GR(A)(0, 0; ε) =
∑

a

|ϕa(0)|2
ε − ξa ± i0

(22)

are the exact retarded (advanced) Green’s functions of the normal metal. Neglecting the
difference between the local and the Fermi-level densities of states, we replace 〈N(0, ε)〉imp =
NF and obtain

R(�) = 1 + δR(�), (23)

where

δR(�) = 1

2π2

1

N2
F

Re[〈GR(0, 0; ε +�)GA(0, 0; ε)〉imp

− 〈GR(0, 0; ε +�)〉imp〈GA(0, 0; ε)〉imp] (24)

represents the impurity vertex corrections to the product of the retarded and advanced Green’s
functions. The terms containing the averages of two retarded or two advanced Green’s functions
vanish. The subsequent steps are standard. Introducing the disorder-averaged Green’s functions

GR(A)(k, ε) = 1

ε − ξk ± i/2τel
, (25)

4
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where ξk = k2/2m − εF, the impurity ladder diagrams corresponding to δR can be summed,
with the following result:

δR(�) = τel

πNF
Re

∫
d3q

(2π)3
�2(q,�)

1 −�(q,�)
, (26)

where

�(q,�) = 1

2πNFτel

∫
d3k

(2π)3
GR

(
k + q

2
, ε + ω

)
GA

(
k − q

2
, ε

)

=
〈

1

1 − i�τel + iτelvF(k)q

〉
k̂

, (27)

vF(k) is the Fermi velocity and the angular brackets denote the Fermi-surface averaging. At
small� and q,�(q,�) � 1 + i�τel − Dq2τel, where D = v2

Fτel/3 is the diffusion coefficient.
Therefore the impurity vertex corrections lead to a diffusion pole in the momentum integral on
the right-hand side of equation (26). In 3D, due to the convergence of the integral at q → 0,
the dependence of δR on � is not singular and can be neglected. On the other hand, �(q,�)
decays slowly at q → ∞:

�(q,�) = − i

2vFqτel
ln

1 − i�τel + ivFqτel

1 − i�τel − ivFqτel

q→∞� π

2vFτel

1

q
,

for a 3D spherical Fermi surface. Thus it is necessary to introduce the ultraviolet cut-off of the
order of the Fermi momentum kF in the integral (26), which gives the following estimate:

δR(�) ∝ τel

NF

∫ kF

0
q2 dq

1

v2
Fτ

2
el

1

q2
∝ 1

εFτel
, (28)

and

R(�) = 1 + O

(
1

εFτel

)
. (29)

Although there is some enhancement of the local DoS correlator and, therefore, of the nuclear
spin relaxation rate due to the diffusive motion of electrons, the magnitude of this effect in a
weakly disordered (εFτel � 1) 3D metal turns out to be negligibly small. Similar conclusions
have also been reached in [13]. Thus we finally arrive at the following result in the normal
state:

Rn = 1
2 J 2 N2

F , (30)

which is known as the Korringa law [1].
In the superconducting state, the integral of �wc on the right-hand side of equation (19) has

a logarithmic divergence, whose origin can be traced to the square-root singularity at the gap
edge in the BCS density of states. This singularity is smeared and the divergence is removed in
the presence of magnetic impurities or if the gap is anisotropic [14]. In this work we focus on
the gap smearing due to the strong-coupling effects in the Eliashberg formalism.

3. Exact eigenstates method: strong coupling

In this section, the exact eigenstates method is generalized to include the effects of electron–
phonon interaction, see also [15, 16]. The Hamiltonian is written as H = H0 + Hph + He−ph,
where H0 describes noninteracting electrons and is given by equation (8),

Hph =
∑
q, j

ω j (q)b
†
q j bq j (31)

5
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is the Hamiltonian of free phonons, with j labelling the phonon branches and ω j (q) being the
phonon dispersion (recall that h̄ = 1 in our units), and

He−ph =
∑

k1,k2, j

g j(k1,k2)(bq j + b†
−q j )c

†
k1σ

ck2σ , (32)

describes the electron–phonon interaction (q = k1 − k2). The electron–phonon vertex has
the following properties: g j(k1,k2) = g∗

j (k2,k1) due to the Hermiticity of He−ph, and
g j(k1,k2) = g∗

j (−k1,−k2) due to time-reversal symmetry. We assume unit volume and
neglect the effects of impurities on the phonon spectrum. We also neglect the disorder effect on
the electron–phonon vertices, which can be justified for long-wavelength acoustic phonons by
the fact that electrons move with the lattice, including the impurity atoms, in order to preserve
charge neutrality [17, 18]. Although this argument cannot be extended to short-wavelength
phonons, we make the usual assumption that the g js are nonrandom functions.

The matrix Green’s function which includes the electron–phonon interaction but not
disorder averaging satisfies the following equation:

Ĝ = Ĝ0 + Ĝ0�̂phĜ. (33)

Here Ĝ0 is the matrix Green’s function of the disordered normal metal without phonons, whose
coordinate representation can be obtained by setting � = 0 in equation (15):

Ĝ0(r, r
′;ωn) = −

∑
a

iωn τ̂0 + ξa τ̂3

ω2
n + ξ 2

a

ϕa(r)ϕ
∗
a(r

′), (34)

and �̂ph is the self-energy due to the electron–phonon interaction:

�̂ph(k,k
′;ωn) = −T

∑
n′

∑
k1,k

′
1, j

δk1−k′
1,k−k′ D j (k − k1, ωn − ωn′)

× g j(k,k1)g j(k
′
1,k

′)τ̂3Ĝ(k1,k
′
1;ωn′)τ̂3, (35)

where

D j (q, νm) = − 2ω j (q)

ν2
m + ω2

j (q)
(36)

is the bare phonon propagator. The contributions to the self-energy from the diagrams with
crossed phonon lines are neglected based on Migdal’s theorem.

The self-energy (35) is still a random quantity. To make progress one has to assume that
it can be averaged independently from the Green’s functions, which amounts to replacing the
random self-energy in equation (33) by its disorder average:

�̂ph(k,k
′;ωn) → �̂ph(k, ωn) = 〈�̂ph(k,k

′;ωn)〉imp. (37)

This approximation is justified by the slow spatial variation of the self-energy compared to
that of the electron Green’s functions [15]. We use the subscript ‘ph’ to emphasize that �̂ph

represents only the phononic part of the full self-energy (the latter also contains the impurity
part: �̂ = �̂ph + �̂imp). The Coulomb interaction can be included in a similar fashion.
Although there are impurity vertex corrections to both the electron–phonon and the Coulomb
vertices due to the diffusive motion of electrons, in a weakly disordered 3D superconductor
those are small [15, 19]. Thus, the average self-energy can be written as

�̂ph(k, ωn) = T
∑

m

1

NF

∑
k′

∫ ∞

0
d�α2 F(k,k′;�) 2�

ν2
m +�2

τ̂3Ĝ(k′, ωn − νm)τ̂3, (38)

where

α2 F(k,k′;�) = NF

∑
j

|g j(k,k
′)|2δ[�− ω j (k − k′)], (39)

and Ĝ(k, ωn) is the disorder-averaged Green’s function of electrons.

6
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For the exact eigenstates method to work we have to neglect the anisotropy of the electron–
phonon interaction, which gives �̂ph(k, ωn) = �̂ph(ωn). Similar to the usual decomposition of
the full self-energy, �̂ = iωn(1 − Z)τ̂0 + φτ̂1 [20], we represent its phononic part in the form

�̂ph(ωn) = iωn[1 − Zph(ωn)]τ̂0 + φph(ωn)τ̂1, (40)

where Zph and φph are real and even functions of the Matsubara frequency. By analogy with
the gap function �(ωn) ≡ φ(ωn)/Z(ωn), one can define �ph(ωn) ≡ φph(ωn)/Zph(ωn).

Replacing �̂ph(k,k
′, ωn) → �̂ph(ωn) in equation (33) we find that the electron Green’s

function before disorder averaging has the form (15), where ĝa is now given by the following
expression:

ĝa(ωn) = − iωn Zph(ωn)τ̂0 + ξa τ̂3 + φph(ωn)τ̂1

ω2
n Z 2

ph(ωn)+ ξ 2
a + φ2

ph(ωn)
. (41)

Inserting this in equation (7), summing over the Matsubara frequencies and averaging with
respect to disorder one obtains the expression (19) for the relaxation rate, with � = �sc, where

�sc(ε1, ε2;ω) = π

2
Tr[ρ̂(ε1, ω)ρ̂(ε2, ω)], (42)

ρ̂(ε, ω) = − 1

π
Im

iωn Zph(ωn)τ̂0 + ετ̂3 + φph(ωn)τ̂1

ω2
n Z 2

ph(ωn)+ ε2 + φ2
ph(ωn)

∣∣∣∣∣
iωn→ω+i0

. (43)

Using equation (29), the integrals over ε1 and ε2 can be calculated separately:

1

π

∫ ∞

−∞
dε

iωn Zph(ωn)τ̂0 + ετ̂3 + φph(ωn)τ̂1

ω2
n Z 2

ph(ωn)+ ε2 + φ2
ph(ωn)

= iωn τ̂0 +�(ωn)τ̂1√
ω2

n +�2(ωn)
.

Here we used the fact that the gap function is not renormalized by impurities: �ph(ωn) =
�(ωn) [20]. Now one can perform the analytical continuation and obtain:∫ ∞

−∞
dε ρ̂(ε, ω) = −Re

ωτ̂0 +�(ω)τ̂1√
ω2 −�2(ω)

, (44)

where the branch of the square root is chosen such that its real part has the same sign as ω, and
�(ω) is the complex gap function for ω just above the real frequency axis [20]. Finally, using
the normal-state relaxation rate (30), we obtain:

Rs

Rn
=

∫ ∞

−∞
dω

(
− ∂ f

∂ω

)[(
Re

ω√
ω2 −�2(ω)

)2 +
(

Re
�(ω)√

ω2 −�2(ω)

)2]
, (45)

which coincides with the clean-limit expression derived by Fibich in [4]. This shows the
absence of the impurity effects on the nuclear spin relaxation rate in a weakly disordered strong-
coupling superconductor (up to the terms of the order of (εFτel)

−1), which is the main result of
this paper.

Note that in general the disorder enters the expression for the relaxation rate through both
the local DoS correlator R and �sc (see equation (42)). The latter depends on Zph and φph,
which are both renormalized by disorder. It is the smallness of nontrivial disorder-induced
correlations of the local DoS in 3D, i.e. the fact that R(ε1 − ε2) � 1, that allows one to express
the relaxation rate entirely in terms of the gap function�(ω), which is not affected by disorder.

4. Perturbation theory in the ladder approximation

As an additional check of our result (45), we now calculate the spin correlator (2) using a
direct summation of the impurity vertex corrections in a standard diagram technique. While

7
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some of our intermediate results look similar to those of [7], the final conclusion turns out to
be qualitatively very different. We find, in agreement with the exact eigenstates method of
section 3, that the leading order correction to the nuclear spin relaxation rate resulting from
impurity scattering is of the order of (εFτel)

−1 in bulk superconductors.
We use the two-component Nambu operators (5) in the momentum representation:

Ck(τ ) =
(

ck↑(τ )
c†
−k↓(τ )

)
, C̄k(τ ) = (c†

k↑(τ ) c−k↓(τ )). (46)

Then the spin-density operators (3) take the following form

S+(0, τ ) = 1
2

∑
k,k′

C̄kr (τ )(τ̂+)rsC̄k′s(τ ),

S−(0, 0) = 1
2

∑
k,k′

Ckr (0)(τ̂−)rsCk′s(0),
(47)

where r, s = 1, 2 are the Nambu indices, and τ̂± = τ̂1 ± iτ̂2. The Hamiltonian of the
system contains the electron–phonon and the screened Coulomb interactions as well as the
term describing the nonmagnetic impurity scattering. By applying the Wick theorem to the
correlator (2), in which S± are given by the expressions (47), one finds in the clean case
K (τ ) = (1/2)

∑
kk′ Tr[Ĝ(k,−τ )(iτ̂2)Ĝ(k′,−τ )(iτ̂2)]. In the presence of impurities we obtain

the following form for the disorder-averaged K (νm), which includes only the second Born
approximation impurity ladder diagrams [9, 10]:

K (νm) = 1
2

∑
k,q

T
∑

n

Tr[Ĝ(k, ωn)(iτ̂2)Ĝ(k + q,−(ωn + νm))�̂(q, ωn, ωn + νm)], (48)

where Ĝ is the matrix Green’s function of electrons, disorder-averaged and fully dressed by all
interactions. We assume a standard isotropic strong-coupling superconductor, for which

Ĝ(k, ωn) = − iωn Z(ωn)τ̂0 + ξk τ̂3 + φ(ωn)τ̂1

ω2
n Z 2(ωn)+ ξ 2

k + φ2(ωn)
, (49)

with the momentum-independent renormalization function Z(ωn) and the pairing self-energy
φ(ωn), which are even functions of ωn . Both Z and φ contain the effects of impurity scattering,
which drop out of the gap function �(ωn) = φ(ωn)/Z(ωn) in the isotropic single-band
case [20]. The vertex function �̂ satisfies the equation

�̂(q, ωn, ωn + νm) = iτ̂2 + 1

2πNFτel

∑
k

τ̂3Ĝ(k + q,−ωn − νm)

× �̂(q, ωn, ωn + νm)Ĝ(k, ωn)τ̂3. (50)

Note that equation (48) could also be obtained from the spin correlator (7), using the identity
(iτ̂2)Ĝ(0, 0,−ωn)(iτ̂2) = G(0, 0, ωn). In the clean limit we recover from equations (48)
and (50) the Fibich expression [4] for the nuclear spin relaxation rate in isotropic single-band
strong-coupling superconductors.

In order to solve equation (50), one represents the vertex function as a linear combination
of the Pauli matrices in the Gor’kov–Nambu space: �̂ = ∑3

i=0 �i τ̂i , where �i ≡
�i (q, ωn, ωn + νm) = (1/2)Tr(τ̂i �̂), and finds a set of four coupled algebraic equations:

�0 =
∑

j

L0 j� j

�1 = −
∑

j

L1 j� j

�2 = i −
∑

j

L2 j� j

�3 =
∑

j

L3 j� j ,

(51)
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where Li j ≡ Li j(q, ωn, ωn + νm), with i, j = 0, 1, 2, 3, are defined by

Li j = 1

2πNFτel

1

2

∑
k

Tr[τ̂i Ĝ(k + q,−ωn − νm)τ̂ j Ĝ(k, ωn)]. (52)

One can see that L10 = L01, L20 = −L02, L21 = −L12, L30 = L03, L31 = L13, L32 = −L23,
so that only 10 out of 16 Li j s in equation (51) have to be computed. The sum over k in
equation (52) is calculated approximately by using

∑
k

p(ξk, ξk+q) � NF

2

∫ 1

−1
ds

∫ +∞

−∞
dξ p(ξ, ξ + Q(s)),

assuming that p is decreasing fast enough with ξk. Here Q(s) = 4εF(q/2kF)(q/2kF + s). In
this way we find

L00 = f−
(
��′ +��′

DD′ + 1

)
, L01 = i f−

��′ −�′�
DD′ ,

L02 = −i f+
(
�

D
+ �′

D′

)
, L03 = i f+

(
�

D
+ �′

D′

)
,

L11 = f−
(
��′ +��′

DD′ − 1

)
, L12 = f+

(
�

D
− �′

D′

)
,

L13 = f+
(
�

D
− �′

D′

)
, L22 = f−

(
��′ −��′

DD′ − 1

)
,

L23 = f−
��′ +�′�

DD′ , L33 = f−
(
��′ −��′

DD′ + 1

)
,

(53)

where

� = ωn Z(ωn), � = φ(ωn), D =
√
�2 +�2,

�′ = (ωn + νm)Z(ωn + νm), �′ = φ(ωn + νm), D′ =
√
�′2 +�′,

and

f+ = 1

32εFτel

1

x
ln

x2(x + 1)2 + (D + D′)2/16ε2
F

x2(x − 1)2 + (D + D′)2/16ε2
F

f− = 1

16εFτel

1

x

[
tan−1 D + D′

4εFx(x − 1)
− tan−1 D + D′

4εFx(x + 1)

]
,

with x = q/2kF. We note that the relationship between our f± and 〈 f±〉 of [7] is 〈 f+〉 = 8i f+,
〈 f−〉 = −8 f−, with the additional difference that our f± contain (D + D′)/4εF instead of
(D + D′)/εF.

We solved the system (51) with the Li j s defined by the expressions (53), using MAPLE.
The result is

�0 = f+
(1 − 2 f−)2 + 4 f 2+

(
�

D
+ �′

D′

)
,

�1 = −i
f+

(1 − 2 f−)2 + 4 f 2+

(
�

D
− �′

D′

)
,

�2 = i

[
1 − f− − 2( f 2+ + f 2−)

(1 − 2 f−)2 + 4 f 2+

(
��′ −��′

DD′ − 1

)]
,

�3 = −i
f− − 2( f 2+ + f 2−)
(1 − 2 f−)2 + 4 f 2+

��′ +�′�
DD′ .

(54)
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Inserting these into the vertex function in equation (48), we finally obtain:

K (νm) = −T
∞∑

n=−∞
An Bn, (55)

where

An = ωn(ωn + νm)−�(ωn)�(ωn + νm)√
ω2

n +�2(ωn)
√
(ωn + νm)2 +�2(ωn + νm)

− 1,

Bn = 2πτel NF

∑
q

[
f− − 2

f 2+
(1 − 2 f−)2 + 4 f 2+

+ 2
f−( f− − 2( f 2+ + f 2−))
(1 − 2 f−)2 + 4 f 2+

]
.

Clearly, in the limit τel → ∞ only the first term in the square bracket in Bn survives, and it

is possible to integrate it over q analytically, with the result π2 N2
F

√
(1 + √

1 + ρ2)/2, where
ρ = (D + D′)/εF. For all the terms in the sum over n in equation (55) for which An is nonzero
(note that�(ωn) � 0 for |ωn| greater than 10 times the maximum phonon frequency), ρ can be
set equal to zero. In this way one recovers Fibich’s formula [4, 5] for the relaxation rate, after
the sum over n is performed, followed by the analytical continuation iνm → ω0+i0, in the limit
ω0 → 0. We note that our Bn, containing the impurity vertex corrections, is different from the
expression for the vertex corrections obtained by Choi and Mele [7], which we have not been
able to reproduce. An additional difference is that we calculate analytically the momentum
integrals which were treated in [7] using some approximation.

Even for a finite τel one can replace ρ → 0, which makes it possible to integrate over q the
second and third terms in the expression for Bn. Our final result for the nuclear spin relaxation
rate in the superconducting state to the leading order in (εFτel)

−1 is

Rs = 1

2
J 2 N2

F

(
1 + 3π

16

1

εFτel

) ∫ ∞

−∞
dω

(
− ∂ f

∂ω

)

×
[(

Re
ω√

ω2 −�2(ω)

)2 +
(

Re
�(ω)√

ω2 −�2(ω)

)2]
. (56)

We see that the impurity vertex corrections turn out to be of the same order as the diagrams with
crossed impurity lines, which we have neglected, and the ratio Rs/Rn is therefore unaffected by
impurity scattering at τ−1

el � εF. This condition is much weaker than � � ξ0, i.e. τ−1
el � �0

(�0 is the superconducting gap at zero temperature), found in [7].

5. Conclusions

We conclude that the answer to the question in the title is negative. Using two different
techniques, the exact eigenstates method and the usual diagrammatic perturbation theory in
the ladder approximation, we have shown that the contribution of nonmagnetic impurities to
the nuclear spin relaxation rate in a bulk superconductor with isotropic pairing is of the order
of (εFτel)

−1, i.e. very small.
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